Diplomate Spotlight Opening Doors with Board Certification: A Conversation with Long Standing Diplomate Joseph Cook Read Opening Doors with Board Certification: A Conversation with Long Standing Diplomate Joseph Cook
Phoenix Newsletter - July 2025 Available Now: 2026 5-Year Cycle Registration Read Available Now: 2026 5-Year Cycle Registration
Home Research Research Library Growing a rural family physician workforce: The contributions of rural background and rural place of residency training Growing a rural family physician workforce: The contributions of rural background and rural place of residency training 2023 Author(s) Patterson, Davis G, Shipman, Scott A, Pollack, Samantha W, Andrilla, C Holly A, Schmitz, David F, Evans, David V, Peterson, Lars E, and Longenecker, Randall Keyword(s) Rural Volume Health Services Research Source Health Services Research Objective: To determine the distinct influences of rural background and rural residency training on rural practice choice among family physicians. Data Sources and Study Setting: We used a subset of The RTT Collaborative rural residency list and longitudinal data on family physicians from the American Board of Family Medicine National Graduate Survey (NGS; three cohorts, 2016–2018) and American Medical College Application Service (AMCAS). ABFM Research Read all 2025 Reclaiming Medical Professionalism In An Era Of Corporate Healthcare Go to Reclaiming Medical Professionalism In An Era Of Corporate Healthcare 2025 Leveraging Large Language Models to Advance Certification, Physician Learning, and Diagnostic Excellence Go to Leveraging Large Language Models to Advance Certification, Physician Learning, and Diagnostic Excellence 2025 Validating 8 Area-Based Measures of Social Risk for Predicting Health and Mortality Go to Validating 8 Area-Based Measures of Social Risk for Predicting Health and Mortality 2025 Natural Language Processing Improves Reliable Identification of COVID-19 Compared to Diagnostic Codes Alone Go to Natural Language Processing Improves Reliable Identification of COVID-19 Compared to Diagnostic Codes Alone
Author(s) Patterson, Davis G, Shipman, Scott A, Pollack, Samantha W, Andrilla, C Holly A, Schmitz, David F, Evans, David V, Peterson, Lars E, and Longenecker, Randall Keyword(s) Rural Volume Health Services Research Source Health Services Research
ABFM Research Read all 2025 Reclaiming Medical Professionalism In An Era Of Corporate Healthcare Go to Reclaiming Medical Professionalism In An Era Of Corporate Healthcare 2025 Leveraging Large Language Models to Advance Certification, Physician Learning, and Diagnostic Excellence Go to Leveraging Large Language Models to Advance Certification, Physician Learning, and Diagnostic Excellence 2025 Validating 8 Area-Based Measures of Social Risk for Predicting Health and Mortality Go to Validating 8 Area-Based Measures of Social Risk for Predicting Health and Mortality 2025 Natural Language Processing Improves Reliable Identification of COVID-19 Compared to Diagnostic Codes Alone Go to Natural Language Processing Improves Reliable Identification of COVID-19 Compared to Diagnostic Codes Alone
2025 Reclaiming Medical Professionalism In An Era Of Corporate Healthcare Go to Reclaiming Medical Professionalism In An Era Of Corporate Healthcare
2025 Leveraging Large Language Models to Advance Certification, Physician Learning, and Diagnostic Excellence Go to Leveraging Large Language Models to Advance Certification, Physician Learning, and Diagnostic Excellence
2025 Validating 8 Area-Based Measures of Social Risk for Predicting Health and Mortality Go to Validating 8 Area-Based Measures of Social Risk for Predicting Health and Mortality
2025 Natural Language Processing Improves Reliable Identification of COVID-19 Compared to Diagnostic Codes Alone Go to Natural Language Processing Improves Reliable Identification of COVID-19 Compared to Diagnostic Codes Alone